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Abstract—It is a sizable challenge to collect education
data from school districts in the United States. The Stanford
Education Data Archive (SEDA) stores a wide range of
covariate data for over 12,000 school districts all over
the US; however, due to the difficulty of gathering such
information, the data is incomplete. Our project uses
satellite imagery in order to construct accurate measures
of educational opportunity all over the United States. We
create a supervised model that takes in satellite images and
incomplete structured data for a particular school district
and produces the performance of that school district,
as measured by the National Assessment of Educational
Progress scale. Our best model achieves a 0.629 R? value on
our test set, indicating that we have successfully developed
a reasonable regression model.

I. INTRODUCTION AND RELATED WORKS

We set out to build a model that, given satellite im-
agery and incomplete structured covariate data, is able
to provide a reasonable estimate of the performance of a
school district, as measured by the National Assessment
of Educational Progress (NAEP) scale. This is done in the
hopes of discovering critical features in satellite imagery,
which have been used to predict poverty as in [1], that
can serve as determinants of educational opportunity.

In [1], researchers working with Stefano Ermon of
Stanford University applied deep learning methods on
satellite imagery in order to develop a regression model
for predicting poverty for the countries of India and
Bangladesh. They were able to achieve R? values of
0.3251 and 0.1080 for India and Bangladesh, respectively,
which gave us an expectation for our own model’s achiev-
able performance. In their paper, they train individual
networks on each of the satellite images separately and
do not attempt to combine these results into a composite
estimate for poverty. In this paper, we attempt to combine
the estimates given by individually trained networks to
form one final estimate. In order to incorporate such a
method to combine multiple networks that have the same
output but different input features, we sought a network
model like an ensemble network, mixture network, as well
as a gated network [2]. We decided, based on [2], that a
GatedCNN was the best choice to base our model.

II. DESCRIPTION OF DATA SET
A. Structured Data

Our structured data is provided by the Stanford Ed-
ucation Data Archive (SEDA), which compiles a wide
range of data describing educational performance for over

12,000 school districts within the United States. Some of
the information this data set provides us with is:

e School District ID

o Socioeconomic Status Composite Index
o Racial Diversity

e Mean Score of School District

These, however, are not the only attributes that are avail-
able; SEDA also provides over 150 additional attributes
- such as, pupil-teacher ratio, percent of households with
5-17 year olds living in poverty, and percent of adults
with a BA or higher. We merged their main dataset with
their covariate dataset to arrive at data for 12,139 school
districts all over the United States.

The covariate dataset, however, was not perfect; around
12.3% of the entries were missing. To tackle this problem,
we tried a number of approaches. First, since all but 5
of the attributes were non-negative, we substituted all
of the missing entries with the value -1 in hopes that
our network would learn to discern the missing values.
Second, we tried to substitute the missing entries with
the mean value of the present entries. Thirdly, we tried
to delete all attributes which were missing any values;
in practice, this resulted in around 2,000 school districts.
Lastly, we set thresholds and deleted attributes that had
more missing entries than the threshold and then filled in
the then fewer missing values. Empirically, we found that
the best results came from substituting the mean.

B. Satellite Imagery

For our baseline model and eventually GatedCNN
model, we used Night-time Light Intensity Data avail-
able from the Defense Meteorological Satellite Program
Operational Linescan System [3] (DMSP-OLS) and the
Visible Infrared Imaging Radiometer Suite [4] (VIIRS).
Our more generalized GatedCNN model makes use of
the Daytime Imaging available from the LandSat-8 [5]
dataset. The day-time data allows the model to make a
more accurate measure based on the discernible pieces of
infrastructure while the night-time data provides inference
on the relative level of wealth locally. These three sources
of satellite image data can be seen in Figure 1.

III. INITIAL APPROACH TO SOLUTION
A. Data Input:

For each school district, we identify its respective
latitude/longitude using the data made available by the
National Center for Education Statistics [6]. We then use
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Fig. 1. Satellite images selected from our four datasets, depicting the
greater Chicago area

this latitude/longitude pair to identify a square image
for our DMSP-OLS, VIIRS and LANDSAT datasets.
We establish a pixel radius to be 10. Since VIIRS has
twice the resolution as DMSP, we retrieve 20x20 and
10x10 pictures available for coordinate pair from each
dataset. On the other hand, LANDSAT, with it’s high
pixel density, yields the largest image of size 600x600 of
the local surrounding area. To start our analysis for our
model, we extracted a single mean performance value for
12,139 school districts. Given this number of data points,
we used a 60-20-20 split for our train-val-test sets.

B. Baseline Architecture:

For our baseline model, we employed a shallow feed
forward network, and used it on the VIIRS and DMSP
datasets. These images were relatively small enough, so it
might be reasonable that they could be handled efficiently
in such a way. Our baseline architecture is composed of
four hidden layers, each with a ReLLU activation function.
This model doesn’t include the categorical data for our
data set, but instead serves to give motivation as to
whether we can reliably draw education performance from
such imagery. To address a variance problem, we added
L2-regularization to our model.

C. Loss Function:

Drawing from the use of this particular loss function
in [1], we use Tensorflow’s [7] preprogrammed version
of the Huber Loss with a delta of 1.0, which we found
helped to deal with outliers in our data set; intuitively, the
Huber loss acts as squared error when the loss is small
and as absolute error when the loss is large. We began
by using a mean-squared error, but this proved to give us
worse performance than the Huber loss.
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Fig. 2. Baseline architecture

IV. INITIAL RESULTS

We found that a small feed-forward neural network
with 4 hidden layers could overfit the train data quite well;
however, this simply did not generalize to the validation
set. We did not have the ability to create more data in
this setting, so we tried regularization, to decrease our
variance. While we could achieve R? values quite close
to 1 on the train set, we could not achieve a positive
R? value on the validation set; with our best model, the
R? value on the validation set was approximately -0.65.
Since we used a feed-forward network that simply flattens
an image and then connects each value of the image to
every neuron in the hidden layers, this architecture is not
ideal for capturing the spatial relationships of images.
These results were to be expected; however, they serve
as a lower threshold for our further analysis. We move
to convolutional networks in our final model, as these
architectures are specifically tailored to handle proximal
relationships within an image.

V. INTRODUCING OUR ARCHITECTURE
A. GatedCNN Architecture:

Drawing from [2], for our model, we train three
CNN’s separately on our three different types of
satellite input data and then we have introduced a small
dense ’Gate’ to find a weighted function based on the
recommendation of the three networks. A GatedCNN
appealed to us because it’s effective for learning to
form an opinion on the recommendations of smaller
components, and then weighs them based on which
component it feels would best predict based on the
image input. In our case, we found that a simple dense
layer with one neuron, which gives us a linear weighting
of our predictions, did, in fact, aid in our final predictions.

Two small convolutional networks are used for the
small pixelled DMSP and VIIRS images. The ResNet-
50 [8] architecture pre-trained on ImageNet is used for
the LANDSAT Data. We experimented with the smaller
DenseNet121 [9] architecture, but we found that the
performance was worse than that of the ResNet-50 archi-
tecture. Our structured data ran through an architecture
much like the baseline model, with 4 hidden layers that
were sufficient to fit the data. We chose a single 1 unit
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Fig. 3. GatedCNN architecture

hidden layer for for the dense gate, which is a linear
weighting, and this aided in our predictions.

B. Data Augmentation

We perform augmentation of the images via the Keras
[10] built-in ImageDataGenerator class; applied to ran-
domly rotate our train images between epochs. This
rotates the square image between 0 and 360 degrees and
then interpolates the remainder of the image to maintain
its dimensions. Given that we were training two convolu-
tional networks from scratch and fine-tuning a very deep
one, this step gave a huge boost to our performance. We
first tried vertical and horizontal flips, but we found that
the rotation setting allowed for the most generalization to
our validation set.

C. Hyperparameter Tuning

For our network, we had the typical parameters of
learning rate, batch size, and depth of our networks.
On the other hand, our network also introduced new
hyperparameters such as picture size (radius) and zoom
level, which then dictates the size of our input set. We
experimented with hyperparameters, sometimes at the
mercy of AWS, which for example, ran out of memory
when we increased batch sizes past a certain threshold.
Similarly, we wanted hyperparameters like picture radius
and zoom level to be large enough to capture a lot of
information, but not too large to capture multiple schools
as well as making the network perform longer searches.
The concluding hyperparameters are:

o Batch Size: 16 due to memory for the LANDSAT
model. VIIRS and DMSP had a size of 1024. We
attempted to use the powers of 2 all of the way up
to 16 for LANDSAT and all the way up to 1024 for
the other two.

e Small Convnet Depth: 1 Conv Layer, 1 Pool, 2
Dense, which is justified because the images are
small and the input set is small.

o Optimizers We defaulted to the Adam optimizer for
the training of our small convolutional networks and
the structured data feed forward model. We used an
RMSProp optimizer for the ResNet-50 architecture.

o Learning Rate We tried learning rates that were the
powers of 10 between -1 and -4. For the fine-tuned
ResNet-50, we used 10~%, which is 1/10 of the
default value, as this made sense when fine-tuning.
For the convolutional nets, we used 1072, For the
structured data feed-forward model, we used 1073.

o Image Radius: for DMSP and VIIRS, we chose an
approximate 10 mile radius, which equates to a
total radius of 10 pixels for VIIRS and 20 pixels
for DMSP. For LANDSAT, we simply used the
maximum radius possible, which is 600x600 pixel.

e Zoom Level: We played around with zoom levels
from 15 to 18. We found that zooming too far out
led to an image in which buildings and other features
became hard to distinguish, while a zoom level of
18 or more just left you with an image of the school
itself. We found that a zoom level of 17 led to the
best results for discerning features.

VI. FINAL RESULTS

To measure the effectiveness of our model, we used
R? metric of accuracy to see how closely related our
regression model was to the actual performance of the
school districts. While we can achieve very good R?
values on the train set for individual models, the best
results on the validation set show that it is difficult to
generalize. As indicated by the Table in (4a), the VIIRS
model is the best individual CNN model under this metric,
and our current best model on the validation set is the
gated model, both with or without structured data.

To gain a better understanding of our results, we
sought visualization to understand this high dimensional
problem. Figures (4b) and (4c) displays actual and the
predicted NAEP scores respectively in color for each plot-
able school district. The better the performance, the higher
on the color band towards red, while lower scores tend
to lean towards blue. Both models display a scale like
appearance, caused by a high density of scores that rank
yellow-green on the colormap, indicated most schools
perform within this margin.

We attempt to visualize the overall difference in model
performance, as seen in figure (4d). Immediately, we see
that our model scores differ from the true scores mostly
within the Californian basin as well as the North-Midwest.
We attribute this to schools in close proximity to one
another, while having vastly different performance. This
can be due to a variety of reasons, such as population
density.

A better way to see model performance, we found,
is plotting the frequency of school performances by
histogram (Figure 4e). Our model, in orange, is able to
non-parametrically identify the mean of the actual score
performance well. However, we see evidence of bias,



which we attribute to the gate estimating the schools
scores pessimistically.

VII. CONCLUSION

By our results, we see that it is possible to generalize
upon a local infrastructure to gain some insight into
education opportunity. By making use of a GatedCNN,
we were able to generalize over a diverse set of satellite
input features.

For the most part, it appeared DMSP was the least
likely to contribute to the Gate Model Prediction. When
we investigated it’s ability to predict, it fell incredibly
short compared to that of VIIRS and LANDSAT. This
could be due to interference to its measurements, possibly
the result of cloud coverage. Conversely, the VIIRS model
appeared to perform the best and would thus earn a greater
weight in the CNN gated prediction. Furthermore, we
see that our structured data, by itself, is the best model,
which makes sense as educational opportunity is very
closely tied to inequality variables. Nevertheless, we see
an improvement when we add the image predications
using the gated network.

VIII. FUTURE WORK

We recommend the following directions for future work
on this topic:

o Better method for extrapolating over missing / sparse
data features. This would allow for using the more
structured data within SEDA to better predict model
performance.

o Alternative methods of interpreting performance by
bucketing schools and then classifying local infras-
tructure into those buckets.

IX. INSPIRATION AND CONTRIBUTION

Greg and Hugo met in an education seminar at Stan-
ford on “Project Based Learning.” Their mutual dedi-
cation to bettering education lead them to pursue this
project when they both teamed up for CS 230 : Deep
Learning. Greg was able to develop much of the input
pipeline for retrieving the satelite imaging as well as
the visualizations of the imagining. Hugo dedicated his
time to focus on developing the ResNet-50 model to
discern the information-rich LANDSAT and handled the
data wrangling and experimentation with the structured
data, looked for alternative architectures, and ran too
many simulations to find the optimal hyperparameters.
Together, they constructed the GatedCNN which lead to
their results.

The code for this project can be accessed at

https://github.com/valdiviad/cs230project.git

Model Val  Test
Night-lights DMSP CONV 052  .028
Night-lights VIIRS CONV .083 .060
Day-Time LANDSAT CONV .056 .055
GatedCNN Model w/o Struct Data .134 .134
Structured Data 613 618
GatedCNN Model w/ Struct Data  .632 .629
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