
Automatic Detection of Whale Lunges: A Deep
Learning Approach

Hugo Valdivia, William McCloskey

December 14, 2018

1 Task Definition

1.1 Problem Statement And Motivation

Understanding whale lunges is a key area of current whale research; researchers use this
information to further conservation efforts and to more deeply understand their impact on
the ecosystems they inhabit [1]. As the largest animals that have ever inhabited this planet
continue to be endangered, this research is of vital importance [2]. Currently, researchers
parse through hundreds of hours of sensor data from tagged whales to label lunges by hand.
Not only does this inefficiency take researchers’ time away from more important tasks, but
it also limits the amount of data they can collect. Indeed, it does not make sense to collect
data more quickly than it can be labeled, and length of tag deployment is limited by the
amount of memory in the tag. An automated lunge detection algorithm would eliminate
the need for hand-labeling and allow for online labeling to free up memory for long-term tag
deployments. Thus, we seek an automated method for detecting whale lunges.

The task is set up as follows. We have a finite input time series sampled at 10 Hz {x(t) :
t ∈ {0, 0.1, 0.2, . . . T}, x(t) ∈ R5} of five tag measurements per sample. These quantities
are speed, pitch, roll, heading, and jerk. We also have a set of ground truth lunge times
Y = {t1, . . . , tk} hand labeled by the researchers. Using the measurements x(t), we want
to output a collection of lunge labels Ŷ = {t̂1, t̂2, . . . , t̂ℓ} corresponding to times when the
whale lunges.

1.2 Evaluation Metrics

To evaluate the performance of the models, we use a few metrics. Because we cannot expect
to output the true times t1, . . . , tk, we define a lunge as correct based on an error tolerance
E. Note that we use an error tolerance E = 5 seconds in this paper. Basically, an estimated
lunge time is correct if it is within E seconds of a true lunge. For a given error tolerance E,
we define the true positive rate tpE and false positive rate fpE as follows:

tpE =
|{ti : mint̂j∈Ŷ |ti − t̂j| ≤ E}|

|Y |

1

fpE =
|{t̂j : minti∈T |ti − t̂j| > E}|

|Ŷ |
We note that we do not need to worry about duplicate labels because our algorithms cor-

rect for these. Based on the quantities tpE and fpE, we can define the F1 score analogously
to the setting of binary classification:

F1E = Harmonic Mean(tpE, 1− fpE).

For us, we focus on optimizing the F1 score for E = 5 seconds as labeling within 5
seconds is sufficient for our task, and both missing true lunge times and outputting correct
labels are important.

2 Literature Review

To our knowledge, researchers working in this domain have applied only classical machine
learning techniques to this problem. The most recent development that we found from 2016
used decision trees, which incorporate the extensive domain knowledge that biologists hold; it
is with such approaches that algorithms can be specifically tailored to fit particular problems
(e.g., predicting lunges on specific whale species) [3]. The results from this paper ultimately
are incomparable with ours, as they covered the more difficult case of shallow feeding but it
appears they did not test their model on unseen data. Nonetheless, it did guide our choices
for evaluation metrics and error tolerance thresholds. In conclusion, these classical methods
have been shown to work reasonably well, but as larger amounts of data have been collected
and as neural network models have been found to succeed on similar tasks, there is huge
potential to achieve better results by moving away from such machine learning algorithms.

Indeed, the literature has found tremendous success in applying deep learning techniques
to time-series data, as in [4]. This paper greatly influenced our design choices in our iterative
progression through different architectures. In particular, the researchers found that on
datasets very similar to ours, the ResNet architecture consistently ranked among the best.
Indeed, out of all of the models that we tried with our dataset, our ResNet model achieved
the best results per our evaluation metrics and is a key part of our final model.

We expand on the literature by appending a lunge correction model to our lunge predic-
tion architectures. The basic idea is as follows: given a positive lunge prediction from the
original detection model, we aim to improve the precise placement of such a prediction. In
order to fully automate this task and to aid researchers, we believe this to be an essential
step.

3 Dataset

Our data comes from the Goldbogen Lab at the Stanford Hopkins Marine Station. Re-
searchers observe whale behavior far below the ocean’s surface with an accelerometer tag,
and obtain a time series consisting of a whale’s depth, speed, jerk, pitch, and roll. Biologists
use the deviations in speed, jerk, or roll, in particular, to indicate lunges. The lunges in
our data have been hand-labeled by the lab. In total, our dataset consists of 29 distinct tag

2

deployments on blue whales. The time, length, and number of lunges of each deployment
are contained in the table below.

Deployment Number Hours Lunges

0 4.9 84
1 4.8 87
2 5.6 114
3 4.7 62
4 0.9 6
5 28.4 369
6 13.1 244
7 30.7 699
8 5.0 8
9 18.9 65
10 1.1 21
11 3.3 40
12 8.8 213
13 4.2 15
14 12.5 213
15 2.6 17
16 3.3 54
17 10.1 230
18 16.1 395
19 6.9 147
20 15.8 276
21 1.14 2
22 8.1 160
23 37.5 383
24 21.5 294
25 26.4 314
26 0.8 10
27 19.1 214
28 3.3 32

Total 319.7 4768

Measurement characteristics vary across deployments due to inconsistencies in tag de-
ployment and whale behavior. To mitigate the effect of this inconsistency on our models,
we standardized each measurement for each deployment. For example, we took the speed
measurements from a given deployment and normalized them to have zero mean and unit
variance. By standardizing per deployment instead of using universal quantities on the whole
training set, we account for individual differences between deployments.

We randomly selected three deployments for our validation set and three deployments
for our test set (provided the validation sets had roughly 300-600 lunges). As a result, our
validation set was deployments 6, 9, and 10 for a total of 330 lunges, and our test set was
deployments 3, 17, and 20 for a total of 568 lunges.

3

4 Approach

To obtain an algorithm that automatically labels a deployment, we use a sliding window ap-
proach. Given a twenty second window of featuresX(t) = x(t−10), x(t−9.9), . . . , x(t), . . . , x(t+9.9), x(t+10),
we label the window as y(t) = 1 if there is a lunge in the middle six seconds of the window, i.e.
if Y ∩{t−3, t−2.9, . . . , t+3} is nonempty, and as y(t) = 0 otherwise. We train our networks
to predict these labels y(t), so the output layer of the network has sigmoid activation.

Figure 1: An example of a window X(9230) with a positive label. Notice that the lunge occurs
within the middle six seconds of the window.

Given a model M that predicts on a twenty second window, we output a sequence of
predictions every second by sliding the window by one second at a time across the entire
deployment to get an output sequence ŝ(t) = M(X(t)), where t = 10, 11, 12, . . . T − 10.
We then smooth the prediction window by a moving average filter ŷ(t) = 1

5

∑2
i=−2 s

(t+i) to
mitigate noisy predictions.

4

Figure 2: Example prediction signal before smoothing (ŝ(t)) and after smoothing (ŷ(t)).

We still have multiple predictions for each true label ti ∈ Y. To resolve this, we take the
set {ŷ(t) > 0.5} and mod out by the transitive closure equivalence relation ŷ(t1) ∼ ŷ(t2) if
|t1 − t2| < 10. Essentially, we cluster together positive predictions if they are less than 10
seconds apart. For each equivalence class C, we output the time with the highest prediction
argmaxt:ŷ(t)∈C ŷ(t) if that prediction exceeds 0.9. These are essentially our predicted lunge

times Ŷ .
Since the model M only predicts based on whether a lunge was in the middle six seconds

of the window, these predictions are not as close in time to the true label as they could be.
So we also train a model N that takes in a predicted time t̂ ∈ Ŷ , the surrounding features
within 8 seconds x(t−8), . . . , x(t+8) and predicts the offset from the true label t. We can thus
use N to make our predictions more precise.

4.1 Preprocessing

To train the model M, we collected windows from the training set deployments. Keeping in
mind our data imbalance problem, we included every possible positively labeled window from
the training deployments in our training set. Thus, for each label ti ∈ Y , we had sixty-one
possible windows X(t−3), X(t−2.9), ..., X(t+3). Originally, we tried keeping only twice as many
negative windows as positive windows per deployment, but we found that our models had a
high false positive rate. After much tuning, we eventually settled on twenty times as many
negative windows as positive windows. One one-hundredth of these windows were randomly
sampled near-misses – they had a lunge in the window but not in the middle six seconds
(this is a fifth as many positive windows). The rest of the negative windows were randomly
sampled from the deployments.

To train the model N , we synthetically generated incorrect labels. For each true label ti,
we generated thirty false labels ti +U where U is drawn uniformly from the interval [−5, 5].
We then got windows x(ti+U−8), . . . , x(ti+U+8) and we train the model N to predict U.

5

4.2 Models

In order to gauge how well we could do expect to do on this task, we asked researchers at
the Goldbogen Lab roughly what percentage of candidate lunges they would unanimously
agree on. Their answer depended on species and feed. In particular, for our blue whale task,
they said they could agree on upwards of 95% of the lunges. Given that the humans labeling
this data could reach this upper bound, this oracle set our expectations for what our more
advanced neural network models, which can be very good at mimicking human performance,
could potentially achieve.

Conversely, in order to get a lower bound on our performance, for our baseline, we chose a
logistic regression model. Our original baseline was framed as a simple binary classification
problem for each time step. Thus, for this model, we completely ignored the time-series
component - that is, our input was a 5-dimensional vector of features for a single time step
and our output was whether a lunge occurred or not. We did not apply any of the techniques
discussed above (no windows, smoothing, lunge correction, et cetera). On our validation set,
this model produced an F1 score of 0.72 on such a binary classification task.

However, with our approach described above, our task is not quite as simple as binary
classification. Thus, we decided to re-run our baseline; for this, we trained a single layer
feed forward network with a single sigmoid output, as the two models are equivalent. This
allowed us to take advantage of the structure we had built for our neural network models,
as opposed to treating it as a simple binary classification task at every time step.

We then moved on to a deeper feed-forward network. We implemented a 3-layer feed-
forward neural network, where the number of hidden units of the layers is [200, 50, 1]. In
order to run our data through this model, we had to flatten our input to create a (1000,1)
input vector. We used ReLU activations for all of the hidden layers except for the output one,
where we used a sigmoid activation. We trained our network using an Adam optimizer with
a learning rate of 0.001 and a binary cross-entropy loss. We found that a network this deep
was enough to overfit on the training set. Since this model was expressive enough to overfit,
we tried two different forms of regularization: ℓ2 regularization and dropout; however, we
opted for early stopping as that required less tuning. During our initial training, we found
that, while this model could do quite well on the training set, we believed more specialized
architectures could better generalize to our validation set.

Because of this, we implemented a Bidirectional RNN LSTM model. We thought this
model would work well, as a model that could take advantage of the previous time steps
as well as look into the future would be a good fit for our problem. Without an extensive
hyper-parameter search, however, this model did not perform as well as the feed forward
model. With limited computational resources, we opted to focus our efforts on our next
model.

For our last model, we trained a ResNet on our data, making use of the implementation
in [5]. In tuning this model, we found the biggest gains in tuning the proportion of negative
samples to positive samples that we fed into the network. This brought our evaluation
numbers quite close to Bayes’ error, which suggested that our earlier models could also
benefit from this increase in data.

Lastly, for our correction model problem, we chose a 4-layer feed-forward network with,
where the number of hidden units of the layers was [32, 20, 5,1]. We used ReLU activations

6

for all of the hidden layers except for the output one, where we used a tanh activation. This
model surprisingly provided better predictions than the ResNet architecture, which could
have been too deep for the task. Since this was a regression problem, we used a mean squared
error loss function and used an Adam optimizer with a learning rate of 0.001

4.3 Final Results

The table below summarizes our results on the validation and test sets using both our lunge
prediction and correction models under a 5 second tolerance.

Model Val TP Val FP Val F1 Test TP Test FP Test F1

Logistic Regression 0.930 0.264 0.822 0.963 0.090 0.945
Feed Forward 0.973 0.027 0.973 0.982 0.049 0.966

ResNet 0.964 0.036 0.964 0.972 0.030 0.971

Surprisingly, the logistic regression did quite well on the test set albeit not as well as the
neural network models. Since we elected to refrain evaluation on the test set until the very
end after all of our models had been tuned, we conjecture that the test set could have been
easier and that the validation numbers are closer to reality. We also observed that logistic
regression converged to a much higher loss than the other models on the training set. We
believe that our methods of smoothing and thresholding to make our final predictions also
cause the model’s specific performance to matter less in the final metrics.

Figure 3: Example output predictions for the feed-forward model with correction. (Circle
denotes a ground truth lunge and triangle denotes our model’s prediction.)

7

(a) Errors For Corrected Model (b) Errors For Uncorrected Model

Figure 4: Histogram of errors (in seconds) for the Feed Forward Model on the validation
set with and without the correction model. The corrected model has an average prediction
error of 0.743 seconds while the uncorrected model has an average prediction error of 0.837
seconds.

5 Error Analysis

When we were training on a lower ratio of negative examples to positive examples, our models
had a high false positive rate. (Around 28% on the validation set.) To diagnose our problem,
we plotted a few examples of the incorrect outputs. We found that the incorrectly labeled
lunge times did not appear close to a lunge. The reason for this is that the negative class
(absence of a lunge) has a huge variety of elements. Since the model learns a class by looking
at representative samples, we found that we needed much more negative examples, eventually
switching from a 2:1 negative window:positive window ratio to a 20:1 ratio. Nonetheless, the
few false positives that the current model outputs still do not look like lunges, though there
are substantially less false positives with the 20:1 ratio.

These errors indicate that our model may be able improve even more. Indeed, though
we are close to Bayes error for our positive predictions, it may be possible to further lower
our false positive. Our model is likely to improve the false positive rate with an even higher
number of negative examples. (Though the result may include a lower true positive rate.)
However, when we tried training on a 30:1 negative window:positive window ratio, our model
never learned to do better than constantly output zero. We think that some tricks with data
augmentation or starting to train on a 20:1 ratio and finishing on a 30:1 ratio may improve
the model even more.

8

Figure 5: Incorrect labels of the Feed Forward Network with a 20:1 negative window:positive
window ratio.

6 Future Work

We can conclude that our models work quite well for this particular blue whale task; however,
there is still much opportunity for continued development. For instance, a natural extension
of this work that [3] included and is of interest to the whale community is to develop models
for different whale species or for shallow feeding. Blue whale lunges are the easiest case to
label, since most of their lunges follow a very stereotypical pattern. Humpbacks feeding on
fish, by contrast, have very erratic time series measurements and many lunges are ambiguous
even to well-trained researchers. Detecting shallow lunge feeding is also difficult, as the
measurement signals can contain plenty of noise due to bubble-net feeding and other shallow
water behavior. We are optimistic that our approach here can be generalized to those cases,
by transfer learning or by other techniques.

9

References

[1] Stanford researchers reveal details about the unique feeding habits of whales. https:

//news.stanford.edu/2016/09/22/unique-feeding-habits-whales-come-light/.
Accessed: 2018-12-14.

[2] Blue whale. https://www.nationalgeographic.com/animals/mammals/b/

blue-whale/. Accessed: 2018-12-14.

[3] Ann N Allen, Jeremy A Goldbogen, Ari S Friedlaender, and John Calambokidis. Devel-
opment of an automated method of detecting stereotyped feeding events in multisensor
data from tagged rorqual whales. Ecology and evolution, 6(20):7522–7535, 2016.

[4] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep learning for time series classification: a review. arXiv preprint
arXiv:1809.04356, 2018.

[5] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Deep learning for time series classification: a review. https://

github.com/hfawaz/dl-4-tsc.

10

https://news.stanford.edu/2016/09/22/unique-feeding-habits-whales-come-light/
https://news.stanford.edu/2016/09/22/unique-feeding-habits-whales-come-light/
https://www.nationalgeographic.com/animals/mammals/b/blue-whale/
https://www.nationalgeographic.com/animals/mammals/b/blue-whale/
https://github.com/hfawaz/dl-4-tsc
https://github.com/hfawaz/dl-4-tsc

	Task Definition
	Problem Statement And Motivation
	Evaluation Metrics

	Literature Review
	Dataset
	Approach
	Preprocessing
	Models
	Final Results

	Error Analysis
	Future Work

